Spittle

This article is about the substance produced in the mouth. For other uses, see Saliva (disambiguation).
Not to be confused with Salvia.

Saliva is a watery substance located in the mouths of organisms, secreted by the salivary glands. Human saliva is 99.5% water, while the other 0.5% consists of electrolytes, mucus, glycoproteins, enzymes, and antibacterial compounds such as secretory IgA and lysozyme.[1] The enzymes found in saliva are essential in beginning the process of digestion of dietary starches and fats. These enzymes also play a role in breaking down food particles entrapped within dental crevices, protecting teeth from bacterial decay.[2] Furthermore, saliva serves a lubricative function, wetting food and permitting the initiation of swallowing, and protecting the mucosal surfaces of the oral cavity from desiccation.[3]

Various species have special uses for saliva that go beyond predigestion. Some swifts use their gummy saliva to build nests. Aerodramus nests are prized for use in bird's nest soup.[4] Cobras, vipers, and certain other members of the venom clade hunt with venomous saliva injected by fangs. Some arthropods, such as spiders and caterpillars, create thread from salivary glands.

Functions

Lubricant

Saliva coats the oral mucosa, mechanically protecting it from trauma during eating, swallowing and speaking. In persons with little saliva (xerostomia), soreness of the mouth is very common, and the food (especially dry food) sticks to the inside of the mouth.

Digestion

The digestive functions of saliva include moistening food and helping to create a food bolus. This lubricative function of saliva allows the food bolus to be passed easily from the mouth into the esophagus. Saliva contains the enzyme amylase, also called ptyalin, which is capable of breaking down starch into simpler sugars that can be later absorbed or further broken down in the small intestine. Salivary glands also secrete salivary lipase (a more potent form of lipase) to begin fat digestion. Salivary lipase plays a large role in fat digestion in newborn infants as their pancreatic lipase still needs some time to develop.[5]

Antimicrobial function

Saliva has both a mechanical cleansing action and a specific (immunoglobulins, e.g. IgA) and non-specific immunologic action (e.g.lysozyme, lactoferrin and myeloperoxidase). These factors control the micro-organisms that survive in the mouth. It also has a protective function, helping to prevent dental plaque build-up on the teeth and washing away adhered food particles. Saliva is also key in preventing ascending infections of the salivary glands (e.g. parotitis).

Ion reservoir/Buffer function

Saliva is supersaturated with various ions. Certain salivary proteins prevents precipitation, which would form salts. These ions act as a buffer, keeping the acidity of the mouth within a certain range (slightly alkaline). This prevents minerals in the dental hard tissues from dissolving.

Hormonal function

Saliva secretes hormone gustin, which is thought to play a role in the development of taste buds[6]

Role in taste

Saliva is very important in the sense of taste. It is the liquid medium in which chemicals are carried to taste receptor cells (mostly associated with lingual papillae). Persons with little saliva often complain of dysgeusia (i.e. disordered taste, e.g. reduced ability to taste, or having a bad, metallic taste at all times).

Wound licking

A common belief is that saliva contained in the mouth has natural disinfectants, which leads people to believe it is beneficial to "lick their wounds". Researchers at the University of Florida at Gainesville have discovered a protein called nerve growth factor (NGF) in the saliva of mice. Wounds doused with NGF healed twice as fast as untreated and unlicked wounds; therefore, saliva can help to heal wound in some species. NGF has not been found in human saliva; however, researchers find human saliva contains such antibacterial agents as secretory IgA, lactoferrin, lysozyme and peroxidase.[7] It has not been shown that human licking of wounds disinfects them, but licking is likely to help clean the wound by removing larger contaminants such as dirt and may help to directly remove infective bodies by brushing them away. Therefore, licking would be a way of wiping off pathogens, useful if clean water is not available to the animal or person.

The mouth of animals is the habitat of many bacteria, some pathogenic. Some diseases, such as herpes, can be transmitted through the mouth. Animal and human bites are routinely treated with systemic antibiotics because of the risk of septicemia.

Glue to construct bird nests

Many birds in the swift family, Apodidae, produce a viscous saliva during nesting season to glue together materials to construct a nest.[8] Two species of swifts in the genus Aerodramus build their nests using only their saliva, the base for bird's nest soup.[9]

Stimulation

The production of saliva is stimulated both by the sympathetic nervous system and the parasympathetic.[10]

The saliva stimulated by sympathetic innervation is thicker, and saliva stimulated parasympathetically is more watery.

Sympathetic stimulation of saliva is to facilitate respiration, whereas parasympathetic stimulation is to facilitate digestion.

Parasympathetic stimulation leads to acetylcholine (ACh) release onto the salivary acinar cells. ACh binds to muscarinic receptors, specifically M3, and causes an increased intracellular calcium ion concentration (through the IP3/DAG second messenger system). Increased calcium causes vesicles within the cells to fuse with the apical cell membrane leading to secretion. ACh also causes the salivary gland to release kallikrein, an enzyme that converts kininogen to lysyl-bradykinin. Lysyl-bradykinin acts upons blood vessels and capillaries of the salivary gland to generate vasodilation and increased capillary permeability respectively. The resulting increased blood flow to the acini allows production of more saliva. In addition, Substance P can bind to Tachykinin NK-1 receptors leading to increased intracellular calcium concentrations and subsequently increased saliva secretion. Lastly, both parasympathetic and sympathetic nervous stimulation can lead to myoepitheilium contraction which causes the expulsion of secretions from the secretory acinus into the ducts and eventually to the oral cavity.

Sympathetic stimulation results in the release of norepinephrine. Norepinephrine binding to α-adrenergic receptors will cause an increase in intracellular calcium levels leading to more fluid vs. protein secretion. If norepinephrine binds β-adrenergic receptors, it will result in more protein or enzyme secretion vs. fluid secretion. Stimulation by norepinephrine initially decreases blood flow to the salivary glands due to constriction of blood vessels but this effect is overtaken by vasodilation caused by various local vasodilators.

Saliva production may also be pharmacologically stimulated by so-called sialagogues. It can also be suppressed by so-called antisialagogues.

Daily salivary output

There is much debate about the amount of saliva that is produced in a healthy person per day; estimates range from 0.75 to 1.5 liters per day while it is generally accepted that during sleep the amount drops to almost zero.[3][11] In humans, the submandibular gland contributes around 70–75% of secretion, while the parotid gland secretes about 20–25% and small amounts are secreted from the other salivary glands.

Contents

Produced in salivary glands, human saliva is 99.5% water, but it contains many important substances, including electrolytes, mucus, antibacterial compounds and various enzymes.[1]

Atomar saliva
Latin saliva atomaris
Gives rise to molecular saliva
Molecular saliva
Latin saliva molecularis
Precursor atomar saliva
Gives rise to normal saliva
Normal saliva
Latin saliva normalis
Precursor molecular saliva

It is a fluid containing:


Spitting

Spitting, or expectoration, is the act of forcibly ejecting saliva or other substances from the mouth. It is often considered rude and a social taboo in many parts of the world, including Western countries, where it is frequently forbidden by local laws (as it was thought to facilitate the spread of disease). These laws are generally not strictly enforced. In Singapore, the fine for spitting may be as high as S$2,000 for multiple offenses, and one can even be arrested. In some other parts of the world, expectoration is more socially acceptable (even if officially disapproved of or illegal), and spittoons are still a common appearance in some cultures.

See also

  • Spittle cures

References

Further reading

External links

  • Template:Sister-inline

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.